

Test Reports

Table of content

Abstract			2
Chapter 1 - N		n	3
Chapter 2 - S	*		
Chapter 3 - E	DURAM ARDL		
Chapter 4 - S	Physical property Chemical Properties SILSHEET vs. Reclaim F	Rubber	19 20 21
Chapter 5 - N	itril Rubber for Pipes		26

Abstract

This document consolidates test reports on various types of DRC (De-vulcanized Rubber Compound), produced by the Levgum process and inserted at different percentage by weight into virgin compounds.

The document is organized by rubber type of the virgin compound into which the DRC was inserted.

This is to demonstrate that the Levgum's DRC can be made from all Sulphur cured rubber, as well as, be inserted into any Sulphur cured virgin rubber.

To that end we have shown the use of NR based DRC in NR based virgin compounds in the first chapter of the document.

The second chapter shows how the use of NR based DRC in an SBR-NR virgin compound can improve Tensile Strength (TS) and Elongation at Break (EB).

In the third chapter we show the good results of EPDM based DRC embedded in an EPDM virgin compound up to 90% by weight.

The fourth chapter discusses a new form of DRC. DRC in sheets with a binding material. Together with our Indian licensee Sundaram Industries Privet Limited (SIPL) we have developed a sheet form to DRC called SILSHEET (DRC with a binder to make it into sheet format). It is shown to have high quality better than any competitor commercially available in the market.

Last chapter covers the Nitril Rubber. We have made Nitril based DRC and used it in a Nitril based virgin compound for Pipes. These results were obtained by an end user. Unfortunately, he allows us to disclose the results but not his name.

On this it is important to note that using the proper type of DRC, namely, DRC originating from a certain polymer-based compound, may, under certain circumstances, even cause an improvement of the resulting compound. For example, using DRC originating from NR based compounds such as those coming from OTR and truck ELT (End of Life Tyres), in an SBR based virgin compound, will improve EB (Elongation at Break) and TS (Tensile Strength). The explanation is as follows: NR based compounds are having better elongation at break and tensile strength than SBR based compounds. The difference might be large enough that DRC made of NR would still poses better EB and TS than virgin SBR based compound. Hence, when embedded in such a compound it will improve its EB and TS. This is but one example to how innovative and creative compounding may cause improvement while lowering the cost of the overall compound. Simply by using the right DRC for the job of elevating the properties one wishes to improve.

The results also demonstrate how changing the acceleration may change some of the properties of the compound (sometime at the expense of other properties).

Levgum has more results to show. Some originating from leading tyer manufacturers. However, these may be shown but not distributed under current NDAs.

NR based virgin compounds

DIK: (https://www.dikautschuk.de/en/)

Deutsches Institute fur Kautschuktechnologie e.V. is the leading German laboratory for rubber. The report was commissioned and paid for by Omnigal when testing Levgum's technology.

Deutsches Institut für Kautschuktechnologie e. V.

Eupener Str. 33 • D-30519 Hannover • Tel.: +49 (511) 84 20 1-0 Fax: +49 (511) 84 20 1-50 • Harald.Geisler@DlKautschuk.de

TESTREPORT

"Physical Characterization of Recycled Rubber Compound RRC)" DIK order no.:05V0188

Dir Objectives

OmniGal Int. produced "Recycled Rubber Compound (RRC)" made of cured rubber supplied by DIK. The objective was to compare the physical properties of three samples one virgin compound and two compounds which contain different concentrations of RRC.

OmniGal	
Rubber Recycling	

Test methodology

- Natural rubber compound ,standard formulation for truck tires, was mixed and cured in the DIK.
- The cured material was Recycled by OmniGal and RRC sent back DIK.
- Compounds were prepared by incorporating two different concentration of RRC 15 and 25 % by weight.
- These three compounds have been characterized physically as follows:
 - ≻Curing properties at 160 °C (DIN 53529)
 - ➢ Mooney Viskosity ML (1+4) at 100 °C (DIN 53523)
 - ➢ Hardness Shore A (DIN 53505)
 - Rebound resilience (DIN 53512 ,d = 12,6 mm)
 - Stress strain properties (DIN 53504)
 - ≻ Abrasion (DIN 53516)

DIK's Formula for Truck Tires

•	Natural rubber	59.1 %
		00.1 /0
•	Carbon black (Type N	115) 29.6 %
•	Zinc oxide	2.4 %
•	Stearic acid	1.2 %
•	6PPD (Antioxidant)	1.2 %
•	TMQ (Antioxidant)	1.2 %
•	Paraffinic wax	0.9 %
•	Aromatic oil	2.4 %

- Sulphur 1.0 %
- CBS (Curing accelerator) 1.0 %

OmniGal Rubber Recycling

	Reference	Sample A	Sample B
RRC concentration (% by weight)	0	15	25
Rheometer at 160 °C			
Min. torque (dNm)	3,58	2,62	3,15
Max. torque (dNm)	19,91	18,94	19,15
∆ torque (dNm)	16,33	16,32	16,00
TC90 (Minutes)	4,04	3,03	2,59
ML (1+4), 100 °C (MU)	31	51	58
Hardness Shore A	65,6 ± 0,2	63,9 ± 0,2	65,2 ± 0,3
Tensile strength (MPa)	30,8 ± 1,4	27,3 ± 0,8	26,6 ± 1,3
Elongation at break (%)	548 ± 17	535 ±12	487 ± 19
Modulus at 50 % elongation (MPa)	1,5 ± 0,1	1,3 ± 0,0	1,4 ± 0,0
Modulus at 100 % elongation (MPa)	2,6 ±0,1	2,2 ± 0,0	2,4 ± 0,0
Modulus at 200 % elongation (MPa)	6,8 ± 0,1	5,7 ± 0,0	6,1 ± 0,1
Modulus at 300 % elongation (MPa)	12,7 ±0,3	11,0 ± 0,1	12,1 ± 0,2
Rebound resilience (%)	45,8 ±0,4	40,7 ± 0,4	41,8 ± 0,5
Abrasion (mm³) *	108 ± 2	130 ± 5	132 ± 4

OmniGal 🥌	
Rubber Recycling	

Conclusions

- The mooney viscosity of both RRC comp. is higher But at values of 51 respectively 58 mooney units at 100 °C we do not expect any processing problems caused by the viscosity.
- The curing behavior of the RRC comp. is very similar to that of the virgin comp.
- Curing speed is faster whit RRC, torque is nearly the same.
- The Shore A hardness of the three samples meet the same area.
- Tensile properties tend to lower when RRC is used. But it's doubtful whether the detected differences in properties are significant with the sense of a statistic evaluation.
- The rebound test gives a higher elasticity for the virgin comp .
- Abrasion loss of both RRC comp. is higher.

NR corrected acceleration

Duram (<u>http://www.duram.co.il/</u>) is an Israeli firm producing injected molded rubber products. It has one of Israel most professional rubber laboratories and rent services of testing. Levgum has worked with them from the start and benefited much from their knowledge.

דורם

DU	RAM

RUBBER PRODUCTS מוצרי גומי בהזרקה										
<u>M.B.</u>	M.B. M-90 (Duram)+Devulcanized NR compound Corrected acceleration									
CODE	CODE M-90 M							-d	Corre	cted acceleration
	ingredients		Duram		85/15	-90 / Dev 75/25	50/50	30/70	A	B
	IR CV60		100.00							
				M.B. M-90	85.00	75.00	50.00	30.00		50.00
Carl	bon Black		42.00							
		H		devulc. NR	15.00	25.00	50.00	70.00		50.00
	Zno	12	2.40							
		3A		Zno	0.26	0.43	0.88	1.20		0.88
Ste	aric acid	2	1.50							
		Ē		Stearine	0.18	0.30	0.60	0.80		0.60
Flecto	ITMQ	ST	1.00							
		MASTER BATCH								
	6PPD	2	1.00							
Ctru	iktol A-60		1.50							
Sur	IKIOI A-60		1.50							
	TOTAL		149.40		100.44	100.73	101.48	102.00		101.48
Sulfur	IUTAL	z	1.60	Sulfur	1.00	1.00	1.00	1.00	0.60	0.80
TMTM	}	ACCELERATION	0.05	MBS	0.50	0.50	0.50	0.50	0.60	0.70
DTDM		ERA	0.22	DTDM	0.00	0.00	0.00	0.00	0.80	0.70
CBC		CEL	0.63						0.00	
	ol A-60	AC	0.50	PVI						0.10
	ML		1.95		2.17	2.37	2.86	3.51	2.85	3.02
	MH	Reometer MDR 2000 160 C	14.84		13.29	13.70	14.43	14.26	14.59	13.50
	TS2		2.50		1.58	1.34	0.87	0.65	1.29	1.17
	T50	eom 200	3.17		2.48	2.06	1.37	1.03	1.70	1.66
	T90		4.82		4.66	3.89	2.64	2.05	2.62	2.81
0	Hardness		60		61	62	63	63	62.5	61.5
+	Shore	8	28		22	22	25	29	25	22
+	100	kg/cm	20		- 22	~~~	25	23	20	22
0			62		55	54	63	74	62	55
+	200	odulus								
0		pod	120		107	107	125	148	122	109
+	300	Σ	280		057	250	220	224	220	240
0+	Tensile stre kg/cm ²		289		257	250	238	224	239	240
0	kg/cm		548		538	503	445	387	448	479
+	Elongatio	on %								
(COMP. SET									
	SPCIFIC GRAVITY S.G.		1.087		1.095	1.100	1.111	1.120	1.111	1.111
ABRAS	ABRASION RESISTANCE - ML		123		136	135	145	149		
	TEAR STREANGTH TROUSERS DIE kg/cm		18.8		16.1	16.2	9.0	7.9		

-

DURAM RUBBER PRODUCTS Uzi Frumer LAB MANAGER

KIBBUTZ RAMAT HAKOVESH 44930, ISRAEL, FAX.972-9-7474479, TEL. 972-9-7474458, 44930 קיבוץ רמת הכובש E-mail: duram@netvision.net.il

SBR NR blend corrected acceleration

DURAM RUBBER PRODUCTS

דורם מוצרי גומי בהזרקה

M.B. NR/SBR blend (client M.B.)

	code Devlc. %		accord	M.B. Formula according to		10%	20%	30%	
	Ingredients			the c					
	<u> </u>	Master Ba	atch (%)	182.00	(100)		163.8 (90)	145.6 (80)	127.4 (70)
		NR			.00	_			
	ch	SBR C. Black		38. 69.					
	bat	C. Black Regenerat		5.5		-			
	er	Chemicals		7.					
	Master batch	D R C Devu	canized	7.,	(0)		18.2 (10)	36.4 (20)	54.6 (30)
et	Σ	ZnO	cumzeu		-		0.40	0.80	1.20
She		Stearic acid					0.20	0.40	0.60
ta :		Total		182	.00		182.60	183.20	183.80
Da		Sulfur		1.00	1.50	T	1.00	1.00	1.00
Jce	rs	CBS		1.50	0.8		1.50	1.50	1.50
nar	ato	TMTM						0.40	0.40
orr	ler	DTDM 80%							
erf	cce	CBS TMTM DTDM 80% TMTD Struktol A-60			1.00		1.00	0.60	0.60
te P	Ā					ļ		0.60	1.00
/ast		Total							
n u	5	°C	ML	1.70	1.77		2.13	2.57	3.12
uio	lete	160	MH	16.40	18.63		16.71	15.37	15.16
ncti	Rheometer	MDR 2000 160° C	TS	3.03	2.42		2.37	2.19	1.86
ıpo,	Rh A	DR 1	T50	3.81	3.15		2.96	2.64	2.22
Pr		W	T90	5.68	5.29		4.67	4.33	3.87
ORR made of NR Productuion waste Performance Data Sheet		Hardness (1) 0 (2) +			63.0		61.0	60.0	60.0
le o	:m²	100%	0		28	I	21	19	19
nad	Modulus kg/cm ²	2009/	+ 0		74		56	46	48
Rτ	nIus	200%	+						
OR	Nodi	300%	0		126		103	90	95
5	É	Tensile	+ 0		141		139	129	133
		strength	+		141		155	123	155
		longation %	0 +		329		385	382	381
	Te	ear resistance kg/c	m Trouseres		6		8.20	8.80	8.80
	AI	BRASION RESIST	ANCE - mm ³		90		95	96	110
		ompression set %							
	o calculated o measured				1.128		1.124	1.128	1.131 JRAM

DURAM RUBBER PRODUCTS Uzi Frumer LAB MANAGER

KIBBUTZ RAMAT HAKOVESH 44930, ISRAEL, FAX.972-9-7474479, TEL. 972-9-7474458, 44930 קיבוץ רמת הכובט E-mail: duram@netvision.net.il

EPDM corrected acceleration

DATE: 08/01/2004 COMPOUND: M.B.E-DM./Duram/bevulcanized EPDM. Corrected acceleration Ingredients Duram 60/0 50/00 A Unigredients Duram 60/0 50/00 A Unigredients Duram 60/0 50/00 50/00 A Unigredients Duram 60/0 00/0 50.00 50.00 60/0 Unigredients Duram 60/0 0.00 50.00 50.00 60/0 Unigredients Duram 60/0 0.00 50.00 50.00 60/0 Unigredients Zno 0.40 0.60 0.60 60/0 Unigredients Stearine 0.12 0.20 0.20 0.20 Suffur 1.40 0.56 0.56 0.56 0.56 0.56 Suffur 1.40 0.64 0.40 0.40 0.40 0.40 MBT 80% 0.24 0.10 0.10 10/0 0.10 10/0 0.10 10/0	DURAM RUBBER PRODUCTS									
CODE E-60 Duran Duran PO/10 T0/30 50/50 A HOTO 70/30 50.00 50.00 50.00 50.00 50.00 HOTO 70/30 50.00 50.00 50.00 50.00 50.00 HOTO Zno 0.40 0.60 0.60 0.60 0.60 TOTAL Z56.50 100.00 100.52 100.80 100.80 0 Suffur 1.40 0.56 0.56 0.56 0.56 0.56 MBTS 0.70 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.10 MBT S0% 0.24 0.10 0.10 1.01 TMTM 0.10 0.10 TMTM 0.10 0.10 TMTM 0.10	DATE:	08/01/20	04		COMPOUND:	<u>M</u> .				
VIDUATION M.B. E-60 90.00 70.00 50.00 50.00 Image: Construct of the second			CODE	E-60		Duram I		canized	Corrected a	cceleration
Suffur 10.00 30.00 50.00 50.00 VI Zno 0.40 0.60 0.60 Stearine 0.12 0.20 0.20 VI 100.00 100.52 100.80 100.80 Stearine 0.12 0.20 0.20 0.20 VIII 1.40 0.56 0.56 0.56 CBS 1.60 0.64 0.64 0.80 MBT 80% 0.24 0.10 0.10 0.10 TMID 00 707 0.28 0.28 0.28 Stukiol A-60 1.10 1.88 2.35 3.00 2.81 ML 1.84 1.88 2.35 3.00 2.81 MH 15.10 1.58 1.30 1.20 1.39 TSD 2.12 1.65 1.30 1.20 1.39 TSD 2.12 1.65 1.30 3.87 HARDNESS 0 60 61 64 64	ingred	lients	/	Duram		90/10	70/30	50/50	А	
Suffur 10.00 30.00 50.00 50.00 VI Zno 0.40 0.60 0.60 Stearine 0.12 0.20 0.20 VI 100.00 100.52 100.80 100.80 Stearine 0.12 0.20 0.20 0.20 VIII 1.40 0.56 0.56 0.56 CBS 1.60 0.64 0.64 0.80 MBT 80% 0.24 0.10 0.10 0.10 TMID 00 707 0.28 0.28 0.28 Stukiol A-60 1.10 1.88 2.35 3.00 2.81 ML 1.84 1.88 2.35 3.00 2.81 MH 15.10 1.58 1.30 1.20 1.39 TSD 2.12 1.65 1.30 1.20 1.39 TSD 2.12 1.65 1.30 3.87 HARDNESS 0 60 61 64 64										
TOTAL 256.50 100.00 100.52 100.80 100.80 Sulfur 1.40 0.56 0.56 0.56 0.56 0.56 CBS 1.60 0.64 0.64 0.64 0.80 0 MBTS 0.70 0.28 0.28 0.28 0.10 100.00 MBT 80% 0.24 0.10 0.10 0.10 TMTM 0.10 TMTD 0.70 0.28 0.28 0.28 0.28 Stuktol A-60 1.10					M.B. E-60	90.00	70.00	50.00	50.00	
TOTAL 256.50 100.00 100.52 100.80 100.80 Sulfur 1.40 0.56 0.56 0.56 0.56 0.56 GBS 1.60 0.64 0.64 0.64 0.80 0.80 MBTS 0.70 0.28 0.28 0.28 0.28 0.10 MBT 80% 0.24 0.10 0.10 0.10 TMTM 0.10 Stuktol A-60 1.10	СН				devulc. EPDM	10.00	30.00	50.00	50.00	
TOTAL 256.50 100.00 100.52 100.80 100.80 Sulfur 1.40 0.56 0.56 0.56 0.56 0.56 CBS 1.60 0.64 0.64 0.64 0.80 0 MBTS 0.70 0.28 0.28 0.28 0.10 100.00 MBT 80% 0.24 0.10 0.10 0.10 TMTM 0.10 TMTD 0.70 0.28 0.28 0.28 0.28 Stuktol A-60 1.10	3AT				Zno		0.40	0.60	0.60	
TOTAL 256.50 100.00 100.52 100.80 100.80 Sulfur 1.40 0.56 0.56 0.56 0.56 0.56 CBS 1.60 0.64 0.64 0.64 0.80 0 MBTS 0.70 0.28 0.28 0.28 0.10 100.00 MBT 80% 0.24 0.10 0.10 0.10 TMTM 0.10 TMTD 0.70 0.28 0.28 0.28 0.28 Stuktol A-60 1.10	RE				Stearine		0.12	0.20	0.20	
TOTAL 256.50 100.00 100.52 100.80 100.80 Sulfur 1.40 0.56 0.56 0.56 0.56 0.56 CBS 1.60 0.64 0.64 0.64 0.80 0 MBTS 0.70 0.28 0.28 0.28 0.10 100.00 MBT 80% 0.24 0.10 0.10 0.10 TMTM 0.10 TMTD 0.70 0.28 0.28 0.28 0.28 Stuktol A-60 1.10	STE						0.12	0.20	0.20	
Sulfur 1.40 0.56 0.56 0.56 0.56 MBTS 0.70 0.28 0.28 0.28 0.10 MBT 80% 0.24 0.10 0.10 0.10 TMTM 0.10 Stuktol A-60 1.10 0.28 0.28 0.28 0.28 0.28 0.10 Stuktol A-60 1.10 0.70 0.28 0.28 0.28 0.28 0.28 ML 1.84 1.88 2.35 3.00 2.81 MITM 0.10 Stuktol A-60 1.10 15.88 15.32 14.93 14.11 TS2 1.56 1.23 0.95 0.86 0.99 T50 2.12 1.65 1.30 1.20 1.39 T90 3.51 3.08 2.97 3.80 3.87 MARDNESS 0 60 61 64 64 0 29 26 29 31 200 0 200 54	MA									
Sulfur 1.40 0.56 0.56 0.56 0.56 CBS 1.60 0.64 0.64 0.64 0.64 0.80 MBTS 0.70 0.28 0.28 0.28 0.28 0.10 MBT 80% 0.24 0.10 0.10 0.10 0.10 TMTM 0.10 Stuktol A-60 1.10 0.28 0.28 0.28 0.28 0.28 ML 1.84 1.88 2.35 3.00 2.81 ML 1.84 1.88 2.35 3.00 2.81 ML 1.84 1.88 2.35 3.00 2.81 TS2 1.56 1.23 0.95 0.86 0.99 T50 2.12 1.65 1.30 1.20 1.39 T90 3.51 3.08 2.97 3.80 3.87 MADNESS 0 60 61 64 64 0 29 26 29 31 30										
Sulfur 1.40 0.56 0.56 0.56 0.56 CBS 1.60 0.64 0.64 0.64 0.64 0.80 MBTS 0.70 0.28 0.28 0.28 0.28 0.10 MBT 80% 0.24 0.10 0.10 0.10 0.10 TMTM 0.10 Stuktol A-60 1.10 0.28 0.28 0.28 0.28 0.28 ML 1.84 1.88 2.35 3.00 2.81 ML 1.84 1.88 2.35 3.00 2.81 ML 1.84 1.88 2.35 3.00 2.81 TS2 1.56 1.23 0.95 0.86 0.99 T50 2.12 1.65 1.30 1.20 1.39 T90 3.51 3.08 2.97 3.80 3.87 MADNESS 0 60 61 64 64 0 29 26 29 31 30										
OF CBS 1.60 0.64 0.64 0.64 0.64 0.80 MBTS 0.70 0.28 0.28 0.28 0.28 0.10 MBT 80% 0.24 0.10 0.10 0.10 TMTM 0.10 Stuktol A-60 1.10 0.28 0.28 0.28 0.28 Stuktol A-60 1.10 0.70 0.28 0.28 0.28 ML 1.84 1.88 2.35 3.00 2.81 ML 1.84 1.532 14.93 14.11 TS2 1.56 1.23 0.95 0.86 0.99 T50 2.12 1.65 1.30 1.20 1.39 T50 2.12 1.65 3.08 2.97 3.80 3.87 HARDNESS 0 60 61 64 64 0 29 26 29 31 200 100 + 36 36 39 41 201		TOTAL		256.50		100.00	100.52	100.80	100.80	
Sruktol A-60 1.10	7	Sulfur		1.40		0.56	0.56	0.56	0.56	
Sruktol A-60 1.10	TO	CBS		1.60		0.64	0.64	0.64	0.80	
Sruktol A-60 1.10 Image: constraint of the strength kg(cm² ML 1.84 1.88 2.35 3.00 2.81 MH 15.10 15.88 15.32 14.93 14.11 TS2 1.56 1.23 0.95 0.99 T50 2.12 1.65 1.30 1.20 0.99 T90 3.51 3.08 2.97 3.80 3.87 HARDNESS 0 60 61 64 64 Shore A + 62 63 66 67 100 + 36 39 41 41 200 54 52 59 68 44 65 78 86 44 45 46 46 44 45 46	ERA			232223.22		0.28	0.28	0.28	100 100 00 000 000 000 000 000 000 000	
Sruktol A-60 1.10 Image: constraint of the strength kg(cm² ML 1.84 1.88 2.35 3.00 2.81 MH 15.10 15.88 15.32 14.93 14.11 TS2 1.56 1.23 0.95 0.99 T50 2.12 1.65 1.30 1.20 0.99 T90 3.51 3.08 2.97 3.80 3.87 HARDNESS 0 60 61 64 64 Shore A + 62 63 66 67 100 + 36 39 41 41 200 54 52 59 68 44 65 78 86 44 45 46 46 44 45 46	ELI								TMTM 0.10	
ML 1.84 1.88 2.35 3.00 2.81 MH 15.10 15.88 15.32 14.93 14.11 TS2 1.56 1.23 0.95 0.86 0.99 T50 2.12 1.65 1.30 1.20 1.39 T90 3.51 3.08 2.97 3.80 3.87 HARDNESS 0 60 61 64 64 Shore A + 62 63 66 67 0 29 26 29 31 1 200 + 64 65 78 86 0 54 52 59 68 107 300 + 93 107 107 107 300 + 93 104 120 104 120 108 110 104 108 110 104 120 104 80 0 369 376	ACC					0.28	0.28	0.28		
MH 15.10 15.88 15.32 14.93 14.11 TS2 1.56 1.23 0.95 0.86 0.99 T50 2.12 1.65 1.30 1.20 1.39 T50 2.12 1.65 1.30 1.20 1.39 T90 3.51 3.08 2.97 3.80 3.87 HARDNESS 0 60 61 64 64 Shore A + 62 63 66 67 100 + 36 36 39 41 200 54 52 59 68 300 + 93 - - 200 + 64 65 78 86 300 + 93 - - - 200 + 64 65 78 86 300 + 93 - - - 20 369 376			8							
HARDNESS Shore A 0 60 61 64 64 100 4 62 63 66 67 100 + 36 36 39 41 200 + 64 65 78 86 200 + 64 65 78 86 200 + 64 65 78 86 200 + 64 65 78 86 300 + 93	CDR					-				
HARDNESS Shore A 0 60 61 64 64 Shore A + 62 63 66 67 0 29 26 29 31 100 + 36 36 39 41 200 + 64 65 78 86 0 54 52 59 68 0 54 65 78 86 0 73 74 89 107 300 + 93	ter N 170					-				
HARDNESS Shore A 0 60 61 64 64 100 4 62 63 66 67 100 + 36 36 39 41 200 + 64 65 78 86 200 + 64 65 78 86 200 + 64 65 78 86 200 + 64 65 78 86 300 + 93	00					0.01753070	10101031031		1013130333	
HARDNESS Shore A 0 60 61 64 64 100 4 62 63 66 67 100 + 36 36 39 41 200 + 64 65 78 86 200 + 64 65 78 86 200 + 64 65 78 86 200 + 64 65 78 86 300 + 93	thec 20			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1000 Cong Cong	2		
Shore A + 62 63 66 67 0 29 26 29 31 100 + 36 36 39 41 0 54 52 59 68 200 + 64 65 78 86 0 73 74 89 107 300 + 93			0						3.07	
0 29 26 29 31 100 + 36 36 39 41 200 + 64 52 59 68 0 54 52 59 68 0 73 74 89 107 300 + 93 - - Tensile strength kg/cm ² 0 96 104 108 110 Elongation % + 95 94 104 120 COMP. SET - - - - SPCIFIC 1.076 1.074 1.102 1.119 ABRASION RESISTANCE - ML - - - -										
S 300 + 93 - - - - <td>N</td> <td></td> <td>0</td> <td>10000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	N		0	10000						
S 300 + 93 - - - - <td>g/cn</td> <td>100</td> <td>+</td> <td>36</td> <td></td> <td>36</td> <td>39</td> <td>41</td> <td></td> <td></td>	g/cn	100	+	36		36	39	41		
S 300 + 93 - - - - <td>s k</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	s k		-							
S 300 + 93 - - - - <td>nIu</td> <td>200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	nIu	200								
Tensile strength kg/cm ² 0 96 104 108 110 4 95 94 104 120 94 104 120 6 0 369 376 346 307 94 104 120 Elongation % + 307 287 256 264 94 104 120 S.G. GRAVITY 1.076 1.074 1.102 1.119 1.119 ABRASION RESISTANCE - ML	lod	200				74	89	107		
kg/cm² + 95 94 104 120 0 369 376 346 307 Elongation % + 307 287 256 264 COMP. SET S.G. GRAVITY 1.076 1.074 1.102 1.119 ABRASION RESISTANCE - ML TEAR STREANGTH	-		-			104	108	110		
0 369 376 346 307 Elongation % + 307 287 256 264 COMP. SET S.G. SPCIFIC GRAVITY 1.076 1.074 1.102 1.119 ABRASION RESISTANCE - ML						2.05.05		0.000.000		
Elongation % + 307 287 256 264 COMP. SET SPCIFIC Image: SPCIFIC										
SPCIFIC GRAVITY 1.076 1.074 1.102 1.119 ABRASION RESISTANCE - ML Image: Constraint of the second	Elongation % +						264			
S.G. GRAVITY 1.076 1.074 1.102 1.119 ABRASION RESISTANCE - ML Image: Constraint of the second	C									
TEAR STREANGTH	S.G.			1.076		1.074	1.102	1.119		
TEAR STREANGTH	ABRASION RESISTANCE - ML									
	TE	AR STREANGT	н							
DURAM										

DURAM RUBBER PRODUCTS Uzi Frumer AB MANAGER

KIBBUTZ RAMAT HAKOVESH 44930, ISRAEL, FAX.972-9-7474479, TEL. 972-9-7474458, 44930 קיבוץ רמת הכובש E-mail: duram@netvision.net.il

ARDL (Akron Rubber Development Laboratory)

ISO 9001

ARDL (https://www.ardl.com/) is considered to be one if not the leading rubber laboratory in the US. It was choosen by Dr. Grady as well as the testing protocol. He based his letter (see next) on this report. The work was paid for by Mr. Galiga who also hired Dr Grady, not by Levgum.

"Progress Through Innovation, Technology and Customer Satisfaction"

AKRON RUBBER DEVELOPMENT LABORATORY, INC. 2887 Gilchrist Road • Akron, Ohio 44305 1-800-830-ARDL • (330) 794-6600 • FAX (330) 794-6610 Website: www.ardl.com . E-mail: info@ardl.com

March 15, 2007

TEST REPORT -

PN 70671

Physical Testing Department

Prepared For:

Mr. Ran Zamir Levgum LTD 26 Adom Street PO Box 705 1-A I.Z. Kanot ISRAEL 82022

Approved By Bob May Mac Wilborn

Supervisor Compound & Mixing

Vice President

ISO 9001:2000

Prepared By:

ISO 9001:2000 Registered Member of ACIL: The American Council of Independent Laboratories

clients to whom they are addressed and she il not be reproduced, except in full, without the willian pormission of Akron R, el herma applica to the application products or processes tested or evaluated. No warrang of any kind is herein con The liabity of ARDL, not while be indere to the annual of consideration pilet for services. is and reports are for the exclusive use of t orabiny, Inc. (AROL). The information contai

Page 1 of 3

PN 70671

"Progress Through Innovation, Technology and Customer Satisfaction"

AKRON RUBBER DEVELOPMENT LABORATORY, INC. 2887 Gilchrist Road · Akron, Ohio 44305 1-800-830-ARDL · (330) 794-6600 · FAX (330) 794-6610 Website: www.ardl.com · E-mail: info@ardl.com

March 15, 2007

Mr. Ran Zamir Levgum

SUBJECT: Evaluation of Reclaim EPDM Rubber in an EPDM Formulation.

RECEIVED: Approximately 18 lbs of ground reclaim EPDM from Levgum.

NO HOLD MASTER BATCH, BANBURY MIXED

1. 3 Batches MB mixed 3-5-07

- 2. Finals Mixed 3-5-07/No Hold
- 3. Rheometer 3-5-07/No Hold

4. Curing 3-5-07/No Hold

5. Physicals 3-6-07/No Hold

CURING DATA, ASTM D 3182 PHASE II Test Plaque	ORIGINAL	20%	50%	90%	
MB no hold Cure Time, minutes Cure Temperature, degrees	35 308	35 308	35 308	35 308	

RHEOMETER DATA, ASTM D 2084

Tech Pro rheo Tech ODR

308 degrees F, 3 degrees arc, 60 min. chart speed, 100 inch lbs., 100 cpm.

	ORIGINAL	20%	50%	90%
Maximum Torque, MH, lbf inch	76.73	86.69	83.10	83.94
Minimum Torque, ML, lbf inc	12.38	14.81	23.39	46.39
Scorch Time, Ts2, minutes	4.87	8.80	7.37	7.83
Cure Time, Tc 50%, minutes	8.23	16.45	14.34	14.80
Cure Time, Tc 90%, minutes	29.47	38.01	44.88	51.77

ORIGINAL PHYSICAL PROPERTIES, ASTM D 412a(02)e1, D 2240

Die C cumbbells tested at 20 in/min.

	ORIGINAL	20%	50%	90%
Shore A Durometer, points	66	65	66	67
Tensile Strength, psi	1980	1920	1810	1550
Ultimate Elongate, %	400	370	330	270
100% Modulus, psi	204	360	370	390
200% Modulus, psi	334	840	890	990
300% Modulus, psi	1321	1420	1570	-

Mr. Ran Zamir					Page 2 of 3	
evgum					PN 70671	
48 Hour Hold Final/Cure						
1.3 Batches MB 3-5-07						
2. Finals Mixed 3-5-07						
3. Rheometers on 3-5-07						
4. Curing on 3-7-07/48 Hr. hold						
5. Physicals on 3-13-07						
CURING DATA, ASTM D 3182						
PHASE II Test Plaques						
MB mixed 3-5 rested 48 hours		20%	50%	90%		
Cure Time, minutes		35	35	35		
Cure Temperature		308	308	308		
Tech Pro rheo Tech ODR		d, 100 inch Ibs.,	100 cpm.			
Tech Pro rheo Tech ODR 308 degrees F, 3 degrees arc, 60 Maximum Torque, MH, lbf inch Minimum Torque, ML, lbf inc Scorch Time, Ts2, minutes Cure Time, Tc 50%, minutes Cure Time, Tc 90%, minutes	0 min. chart speed 0 CRIGINAL 76.73 12.38 4.87 8.23 29.47	20% 86.69 14.81 8.80 16.45 38.01	100 cpm. <u>50%</u> 83.10 23.39 7.37 14.34 44.88	90% 83.94 46.39 7.83 14.80 51.77		
Tech Pro rheo Tech ODR 308 degrees F, 3 degrees arc, 60 Maximum Torque, MH, lbf inch Minimum Torque, ML, lbf inc Scorch Time, Ts2, minutes Cure Time, Tc 50%, minutes Cure Time, Tc 90%, minutes ORIGINAL PHYSICAL PROPER	0 min. chart speed 0 RIGINAL 76.73 12.38 4.87 8.23 29.47 CTIES, ASTM D 4	20% 86.69 14.81 8.80 16.45 38.01	50% 83.10 23.39 7.37 14.34	83.94 46.39 7.83 14.80		
	0 min. chart speed 0 RIGINAL 76.73 12.38 4.87 8.23 29.47 CTIES, ASTM D 4	20% 86.69 14.81 8.80 16.45 38.01 112a, D 2240	50% 83.10 23.39 7.37 14.34 44.88	83.94 46.39 7.83 14.80 51.77		
Tech Pro rheo Tech ODR 308 degrees F, 3 degrees arc, 60 Maximum Torque, MH, Ibf inch Minimum Torque, ML, Ibf inc Scorch Time, Ts2, minutes Cure Time, Tc 50%, minutes Cure Time, Tc 90%, minutes ORIGINAL PHYSICAL PROPER Die C dumbbells tested at 20 in/r MB 48 hour hold Tested 3-13 Shore A Durometer, points	0 min. chart speed 0 RIGINAL 76.73 12.38 4.87 8.23 29.47 CTIES, ASTM D 4	20% 86.69 14.81 8.80 16.45 38.01 112a, D 2240 20% 68	50% 83.10 23.39 7.37 14.34 44.88 50% 67	83.94 46.39 7.83 14.80 51.77 <u>90%</u> 69		
Tech Pro rheo Tech ODR 308 degrees F, 3 degrees arc, 60 Maximum Torque, MH, Ibf inch Minimum Torque, ML, Ibf inc Scorch Time, Ts2, minutes Cure Time, Tc 50%, minutes Cure Time, Tc 90%, minutes ORIGINAL PHYSICAL PROPER Die C dumbbells tested at 20 in/r MB 46 hour hold Tested 3-13 Shore A Durometer, points Tensils Strength, psi	0 min. chart speed <u>ORIGINAL</u> 76.73 12.38 4.87 8.23 29.47 <u>RTIES, ASTM D 4</u> min.	20% 86.69 14.81 8.80 16.45 38.01 112a, D 2240 68 1915	50% 83.10 23.39 7.37 14.34 44.88 50% 67 1800	83.94 46.39 7.83 14.80 51.77 <u>90%</u> 69 1363		
Tech Pro rheo Tech ODR 308 degrees F, 3 degrees arc, 60 Maximum Torque, MH, lbf inch Minimum Torque, ML, lbf inc Scorch Time, Ts2, minutes Cure Time, Tc 50%, minutes Cure Time, Tc 90%, minutes ORIGINAL PHYSICAL PROPER Die C dumbbells tested at 20 in/r MB 48 hour hold Tested 3-13 Shore A Durometer, points Tensils Strength, psi Ultimate Elongate, %	0 min. chart speed <u>ORIGINAL</u> 76.73 12.38 4.87 8.23 29.47 <u>RTIES, ASTM D 4</u> min.	20% 86.69 14.81 8.80 16.45 38.01 112a, D 2240 68 1915 385	50% 83.10 23.39 7.37 14.34 44.88 50% 67 1800 344	83.94 46.39 7.83 14.80 51.77 <u>90%</u> 69 1363 245		
Tech Pro rheo Tech ODR 308 degrees F, 3 degrees arc, 60 Maximum Torque, MH, lbf inch Minimum Torque, ML, lbf inc Scorch Time, Ts2, minutes Cure Time, Tc 50%, minutes Cure Time, Tc 90%, minutes ORIGINAL PHYSICAL PROPER Die C dumbbells tested at 20 in/r MB 46 hour hold Tested 3-13 Shore A Durometer, points Tensils Strength, psi Ultimate Elongate, % 50% Modulus, psi	0 min. chart speed <u>ORIGINAL</u> 76.73 12.38 4.87 8.23 29.47 <u>RTIES, ASTM D 4</u> min.	20% 86.69 14.81 8.80 16.45 38.01 112a, D 2240 20% 68 1915 385 211	50% 83.10 23.39 7.37 14.34 44.88 50% 67 1800 344 215	83.94 46.39 7.83 14.80 51.77 90% 69 1363 245 233		
Tech Pro rheo Tech ODR 308 degrees F, 3 degrees arc, 60 Maximum Torque, MH, lbf inch Minimum Torque, ML, lbf inc Scorch Time, Ts2, minutes Cure Time, Tc 50%, minutes Cure Time, Tc 90%, minutes ORIGINAL PHYSICAL PROPER Die C dumbbells tested at 20 in/r MB 46 hour hold Tested 3-13 Shore A Durometer, points Tensils Strength, psi Ultimate Elongate, % 50% Modulus, psi 100% Modulus, psi	0 min. chart speed <u>ORIGINAL</u> 76.73 12.38 4.87 8.23 29.47 <u>RTIES, ASTM D 4</u> min.	20% 86.69 14.81 8.80 16.45 38.01 122a, D 2240 68 1915 385 211 347	50% 83.10 23.39 7.37 14.34 44.88 50% 67 1800 344 215 358	83.94 46.39 7.83 14.80 51.77 90% 69 1363 245 233 384		
Tech Pro rheo Tech ODR 308 degrees F, 3 degrees arc, 60 Maximum Torque, MH, lbf inch Minimum Torque, ML, lbf inc Scorch Time, Ts2, minutes Cure Time, Tc 50%, minutes Cure Time, Tc 90%, minutes ORIGINAL PHYSICAL PROPER Die C dumbbellis tested at 20 in/r MB 46 hour hold Tested 3-13 Shore A Durometer, points Tensila Strength, psi Ultimate Elongate, % 50% Modulus, psi	0 min. chart speed <u>ORIGINAL</u> 76.73 12.38 4.87 8.23 29.47 <u>RTIES, ASTM D 4</u> min.	20% 86.69 14.81 8.80 16.45 38.01 112a, D 2240 20% 68 1915 385 211	50% 83.10 23.39 7.37 14.34 44.88 50% 67 1800 344 215	83.94 46.39 7.83 14.80 51.77 90% 69 1363 245 233		

15

Mr. Ran Zamir				Page 3 of 3
Levgum				PN 70671
3. 48 Hour Hold MB/Final 1. 3 Batches MB 3-5-07				
2. Finals Mixed 3-7-07/48 Hold				
3. Rhecmeters on 3-7-07				
4. Cured on 3-7-07				
5. Physicals 3-13-07				
CURING DATA, ASTM D 3182				
PHASE II Test Plaques				
MB mixed 3-5 rested 48 hours	20%	50%	90%	
Cure Time, minutes	35	35	35	
Cure Temperature	308	308	308	
RHEOMETER DATA, ASTM D 2084				
Tech Pro rheo Tech ODR				
308 degrees F, 3 degrees arc, 60 min. d	chart speed, 100	inch lbs., 10	0 cpm.	
MB 48 hour hold (3-7)				
All here	20% 85.39	50% 84.76	90% 92.33	
Maximum Torque, MH, Ibf inch	14.21	22.83	44.57	
Minimum Torque, ML, lbf inch Scorch Time, Ts2, minutes	8.66	7.35	6.46	
Cure Time, Tc 50, minutes	15.92	14.36	13.76	
Cure Time, Tc 90, minutes	34.97	42.97	46.49	
ORIGINAL PHYSICAL PROPERTIES, Die C cumbbells tested at 20 in/min.	ASTM D 412a, I	0 2240		
FINALMB 48 hour hold Tested -13				
	20%	50%	90%	
Shore A Durometer, points	68	68	68	
Tensile Strength, psi	1713	1711	1546	
Ultimate Elongate, %	345	319	275	
50% Modulus, psi	212	219	221	
100% Modulus, psi	349	365	362	
200% Modulus, psi	825	886	917	
300% Modulus, psi	1395	1551		
				A REAL PROPERTY AND A REAL

Prepared By:

ared By: <u>Bob May</u> Bob May & Supervisor Compound Development Mixing & Processing

Approved By: Mac Wilborn

Vice President **Business Development Services**

BM/MW/cvh

Dr. Grady's report (based on the above ARDL results. Tests made under his instructions)

The University of Oklahoma

SCHOOL OF CHEMICAL, BIOLOGICAL AND MATERIALS ENGINEERING

April 12, 2007

Michael L. Galiga, Esq. CEO As One With The Environment, L.L.C. 3001 E. Memorial Rd. Edmond, OK 73013

Dear Mr. Galiga,

I, Dr. Brian Grady, Professor in the School of Chemical, Biological and Materials Engineering at the University of Oklahoma, have completed my investigation into the technology, patented by Levgum Ltd., presented by your group regarding the process for devulcanization of rubber with the end product named PurusTM Rubber, powered by Levgum technology, as a filler in virgin rubber.

I strongly endorse this technology for the following reasons: The technology works. The technology has no drawbacks or hidden problems. The technology can be and has been put into industrial practice with few challenges and at a reasonable cost. The remainder of the letter describes the reasons for my very positive overall evaluation.

Does the technology work?

A great deal of data from a variety of worldwide sources shows that the process works very well. Mr. Galiga, CEO of As One With The Environment, asked me to verify the current data with a comprehensive test with a premier laboratory in America. Hence, I designed such a study and located such a laboratory. Mixing, aging and tensile tests were carried out by Akron

Rubber Development Laboratory (ARDL), which is a recognized leader in its field. The rubber was devulcanized by Levgum personnel. EPDM rubber was used for the tests. Briefly stated, the following steps were undertaken:

- a) Rubber was mixed and cured using a standard formulation. No antioxidant was used in order to shorten heat aging tests.
- b) A portion of the rubber was tested using tensile and heat aging tests.
- c) The remainder of the rubber was made into crumb and devulcanized.
- d) The devulcanized rubber crumb (PurusTM Rubber, powered by Levgum technology,) was mixed with the uncured rubber of the same general formulation and cured.
- e) Purus[™] Rubber, powered by Levgum technology, substitution levels of 20%, 50%, and 90% were tested.
- f) The tensile strength and elongation at break dropped approximately <u>5%</u>, <u>10%</u> and <u>15%</u> respectively, which is outstanding performance.
- g) There was no statistically significant difference in heat aging behavior between the material with and without Purus[™] Rubber, powered by Levgum technology,.

Simply stated, the performance of Purus[™] Rubber, powered by Levgum technology, is excellent.

100 East Boyd, T-335, Sarkeys Energy Center, Norman, Oklahoma USA 73019-1004 PHONE (405) 325-5811 FAX: (405) 325-5813

Does the technology have any drawbacks or hidden technological problems?

Environmental Stability

Data indicates that with the appropriate chemicals, material containing PurusTM Rubber, powered by Levgum technology, will behave identical to material with 100% virgin rubber with respect to environmental resistance (heat, water etc). The aging property of the rubber tested by others simulated up to 25 years of outdoor use with good results.

Cure Time

In our tests, the cure time was about 50% slower than the cure time of the 100% virgin rubber. The reason for the difference is that it is difficult to predict how accelerators/curing agents have to be adjusted with the PurusTM Rubber, powered by Levgum technology, to match the cure times. It would be a simple matter in the future to match the cure times by adjusting the amounts of accelerators/curing agents. Data provided by others suggest that no change in performance will occur when the curing time is the same as the virgin rubber.

Stiffness

In our perfectly controlled tests, the moduli at 100% elongation (as well as higher elongation moduli) were higher than the modulus of the 100% virgin rubber.

Hardness and Cut Strength

The hardness is simply the arithmetic average of Purus[™] Rubber, powered by Levgum technology, and virgin rubber. The cut strength behavior is expected to be somewhere between the arithmetic average and the behavior of the tensile strength.

What technological issues will have to be addressed in an industrial scale facility?

Quality control of the incoming raw material

<u>There are two issues: particle size and chemical composition of the rubber crumb.</u> The more uniform the particle size and chemical composition the higher quality of the PurusTM Rubber, powered by Levgum technology.

Proper Mixing Procedures

PurusTM Rubber, powered by Levgum technology, and the tested virgin rubber were mixed very well under my supervision at ARDL. There are two issues with respect to mixing. The first is that many passes through a roll-mill to mix the devulcanization agent and rubber crumb are required. The minimum number of passes will depend on crumb particle size. The second issue is that the PurusTM Rubber, powered by Levgum technology, and the virgin rubber should be well mixed to achieve the best performance. The necessary procedures to produce a well-mixed rubber will consist of mixing in an internal mixer followed by multiple passes through a roll-mill with chilled rollers. It is possible internal mixing alone will produce a good enough mixture, but I think it unlikely. All pieces of equipment are standard to the industry.

Maximum Substitution Level

For the maximum cost-savings, the higher the PurusTM Rubber, powered by Levgum technology, substitution level, the better. However, it is probably not the cured rubber performance that will determine the highest substitution level possible, it is the ability to handle and mix the uncured PurusTM Rubber,

100 East Boyd, T-335, Sarkeys Energy Center, Norman, Oklahoma USA 73019-1004 PHONE (405) 325-5811 FAX: (405) 325-5813

powered by Levgum technology, plus virgin rubber. Above about 50% substitution, continuous large sheets may be difficult to form without modifiers. At 20% substitution, the material handles nearly identical to 100% virgin rubber.

In summary, I could not be more pleased with the outstanding test results from ARDL on Purus[™] Rubber, powered by Levgum technology, and believe that this technology can significantly increase and improve recycling of already-used rubber as well as reduce the amount of precious fossil fuels used to make new rubber.

Please feel free to contact me if you have any questions.

Dr. Brian Grady

Professor President's Associate Presidential Professor School of Chemical, Biological and Materials Engineering University of Oklahoma 100 East Boyd, EC Room T-223 Norman, OK 73069 (405) 325-4369 FAX (405) 325-5813 E-Mail: <u>bpgrady@ou.edu</u>

100 East Boyd, T-335, Sarkeys Energy Center, Norman, Oklahoma USA 73019-1004 PHONE (405) 325-5811 FAX: (405) 325-5813

SILSHEET

Physical properties

<u>Physical Pr</u> SILSH		<u>of</u>
MATERIAL CHARACTERISTICS		SILSHEET SPEC.
Tensile Strength	Kg/ cm2	83 Min.
Elongation at Break	%	240 Min.
Hardness	Shore A	59+/- 3
Specific Gravity		1.13+/- 0.0

Sundaram Industries Privet Limited (<u>http://www.silrubberresources.com/</u>) was established in 1943 as part of the TVS Group. One of the most respected business groups in India. the Group is the largest 2-wheeler tyre manufacturer in India. SIPL is specialized in solid tyres sold all over the world.

It has been Levgum's licensee since 2003

Chemical properties

Chemical Pro	opertie	s of
SILSH	EET	-
MATERIAL CHARACTERISTICS	UNIT	SILSHEET SPEC.
Ash Content @ 800° C / 2Hrs	%	6.0 Max
Moisture Content @ 105º / 2 Hrs	%	1.0 Max
Carbon Content	%	20 - 30
Rubber Hydrocarbon Content	%	50 +/- 5

SILSHEET vs. Reclaim Rubber

SILSHEET Vs High Tensile Reclaim and Superfine Reclaim							
Test Results	Units	Silsheet	SF Reclaim	HT Reclaim			
1 644	an	83	33	68			
Tensile Strength	Kg/cm²	85	35	65			
		85	35	68			
		260	120	240			
Elongation Break	%	240	120	240			
		260	120	240			

(A NABL (ISO	of Commerce & Industr - 17025-2005) Accree @irmra.org • Website	ditated Lab		
	TECHNICAL REPO			
RPT / 2013 / 11625 - MTL Sample : HT Reclaim Specn. IS-74				Page of
Test (Condition)	Method	Unit	Specified Value	Observed Valu
Tensile Strength (Before Ageing.)	Clause4.2&7	N/mm²		6.9
Elongation at break (Before Ageing.)	Clause4.2&7	%	-	270
300% Modulus (Before Ageing,)	Clause4.2&7	N/mm²	-	NA
Sample : Silsheet Specn. IS-7490-	1997			
Test (Condition)	Method	Unit	Specified Value	Observed Valu
Tensile Strength	Clause4 2&7	N/mm²		10.5
		(Series)	a marten and the second	10.5
(Before Ageing.) Elongation at break (Before Ageing.)	Clause4.2&7	%	The second	310
(Before Ageing.) Elongation at break	Clause4.2&7 Clause4.2&7		-	
(Before Ageing.) Elongation at break (Before Ageing.) 300% Modulus	Clause4.2&7	%	-	310
(Before Ageing.) Elongation at break (Before Ageing.) 300% Modulus (Before Ageing.)	Clause4.2&7	%		310 9.8
(Before Ageing.) Elongation at break (Before Ageing.) 300% Modulus (Before Ageing.) Sample : Super fine Reclaim Spec	Clause4.2&7	% N/mm²	Specified Value	310 9.8
(Before Ageing.) Elongation at break (Before Ageing.) 300% Modulus (Before Ageing.) Sample : Super fine Reclaim Spec Test (Condition) Tensile Strength	Clause4.2&7	% N/mm² Unit	Specified Value	310 9.8 Observed Va

IRMRA – Indian Rubber Manufacturers Research Association (<u>https://irmra.org/</u>) holds one of India's most lucrative rubber laboratories highly considered for professionalism and honesty.

Field tests

O			6.63			
Fi			nce of 63 K Applic	-	SHEET	
Field Test Details	Trial 4	Trial 4	Trial 4	Trial 4	Trial 5	Trial 5
Vehicle Type	-7	В	us	191	В	us
Route	Highway and	Rough Road(Gudiyatam- Ka	andapalli)	Highway a Road(Vaniy Ambu	
No of Kms Run	40126	40126	40126	40126	20900	20900
Remaining Skid Depth	4 mm	4 mm	4 mm	4 mm	5 mm	5 mm
Normal mileage in this Route	Equal with Regular	Equal with Regular	Equal with Regular	10	Equal with Regular	
Compound Details	63	phr (28%Silsh	eet)	Regular Ultra compd.	63 phr (28%Sil sheet)	Regular Ultra compd.
Tvre No	MF3025900 2211	MF3032987 2211	MF3020215 2211	MF3020114 2211	BR2008383	BR201832 3812

Field tests with high SILSHEET load (70% by weight)

Г

Field Test Performance of SILSHEET in CAR/VAN Application

Field Test Details	Trial 1	Trial 2	Trial 3	Trial 4
Vehicle Type	Ambassador Car	Ambassador Car	Ambassador Car	TATA Safari
Route	Highway and Rough Road	City Base and 20% outer running	City Base and 40% outer running	City base and 20% outer Running
No of Kms Run	37010	33150	28120	24100
Remaining Skid Depth	1 mm	1.5 mm	1.5 mm	4 mm
Normal mileage in this Route	30,000 - 35000	30,000 - 35000	25,000 - 30000	45,000
Compound Details	70% Silsheet	70% Silsheet	70% Silsheet	70% Silsheet
Tyre No	MF509685314 10	JKB00069432 10	MRF 44084211911	CDC 2808

Field Test Performance of SILSHEET in VAN / OTR Application

Field Test Details	Trial 5	Trial 6	Trial 6	
Vehicle Type	Van	Tractor	Tractor	
Route	Highway and Rough Road	Agriculture field	Agriculture field	
No of Kms Run	15700	1020 hrs	1020 hrs	
Remaining Skid Depth	6mm	12 mm	11.5 mm	
Normal mileage in this Route	Around 25000	Around 1500 hrs	Around 1500 hrs	
Compound Details	70% Silsheet	70% Silsheet in OTR	70% Silsheet in OTR	
Tyre No	MF1050340380 9	A13568870	A13527570	

Nitril Rubber

(Client allowed use of data without his name for his own reasons)

Blends of DRC with virgin rubber compounds

Tables 1 and 2 represent application of DRC in nitrile compounds. DRC obtained from corresponding nitrile scrap was used in both cases.

Content of NBR pipes compound	of DRC	Mod 100	Mod 300	TS	EB	Hardness	Sp. gravity
100	0	1.5	2.1	3.5	563	60	1.62
80	20	1.4	2.2	3.1	570	58	1.64

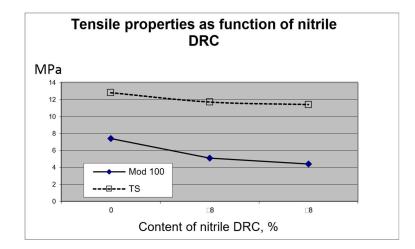

Table 1: NBR pipes compound

Table 2 shows full applicability of 20% DRC-containing compound as substitute of virgin one. Main property for pipes – Elongation – has been even improved at addition of DRC.

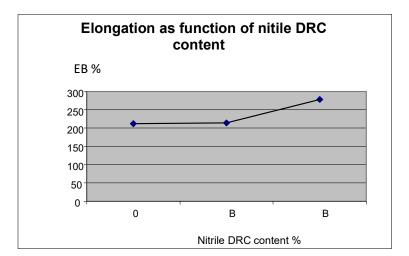
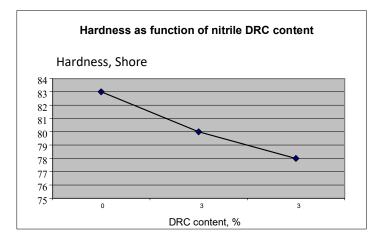

Content of nitrile rubber	Content of DRC	Mod 100	TS	EB	Hardness
100	0	7.4	12.8	212	83
85	15	5.1	11.7	214	80
15	85	4.4	11.4	278	78

Table 2: full applicability of 20% DRC-containing compound as substitute of virgin one. Main property for pipes – Elongation – has been even improved at addition of DRC.



Picture 1: Tensile properties

Picture 2: Elongation at Break

Picture 3: Hardness, Shore

Phenomenal effect has demonstrated nitrile hose compound as it is shown in Table 3 and pictures 1, 2 and 3: test revealed improvement or good retention of main parameters of this compound even at content of DRC 85%.

Conclusions

- 1. DRC proved its applicability in Nitrile compounds with virgin rubber blends for pipes & hoses industry etc.
- 2. Addition of DRC or substitution of the part of entire blend for DRC is the most effective way of its application in compounds. Under no circumstances should substitution of virgin rubber only for DRC be recommended.